EVALUATION OF POTENTIAL ANTIMICROBIAL ACTIVITY OF LEVOFLOXACIN LOADED SOLID LIPID NANOPARTICLES

Pavan kumar reddy A1*, S. Parthiban1, A. Vikneswari2, G.P. Senthilkumar3

1Department of Pharmaceutics, Bharathi College of Pharmacy, Bharathinagara, Mandya, Karnataka, India.
2Department of Pharmacy Practice, Bharathi College of Pharmacy, Bharathinagara, Mandya, Karnataka, India.
3Department of Pharmaceutical Chemistry, Bharathi College of Pharmacy, Bharathinagara, Mandya, Karnataka, India.

ABSTRACT
The aim of the present study is an attempt to formulate and evaluate Levofloxacin loaded solid lipid nanoparticles and to evaluate its antimicrobial activity against *S. aureus*. Solid lipid nanoparticle was prepared by hot homogenization followed by ultrasonication method using steric acid as lipid and poloxamer 188 as surfactant. Antimicrobial efficacy studies, Ocular irritation studies, stability studies were conducted for the selected formulations. Compatibility studies by FT-IR and DSC showed no significant interactions between drug and excipients. The comparative *in-vitro* study of the optimized formulation shows better release than the marketed product. The formulations were stable at intermediate stability testing conditions. Levofloxacin loaded SLN were successfully prepared by the hot homogenization method. The developed formulations were stable non irritant and showed better antibacterial action. From the above study we can conclude that the developed formulation is hence suitable for sustained ocular drug delivery having better antibacterial action.

KEYWORDS
Levofloxacin, Solid lipid nanoparticles (SLN), DSC and Antimicrobial studies.

INTRODUCTION
Ocular drug delivery remains challenging because of the complex nature and structure of the eye. The anatomy, physiology and biochemistry of the eye render this organ highly impervious to foreign substances. A significant challenge to the formulator is to circumvent the protective barriers of the eye without causing permanent tissue damage1. Acute bacterial conjunctivitis is a prevalent infection which requires an immediate work up management.
Generally a treatment with ocular antibiotics is recommended to eradicate the pathogen2. Basically; ocular infections are treated by using topical application of antibiotics in the form of eye drops. About 90\% of the dose applied topically from such solutions is lost due to pre-corneal losses (lacrimation and drainage) which lead to poor aqueous availability, so frequent dosings are required for the instillation to achieve an adequate level and therapeutic effect3. To overcome these problems, various novel drug delivery systems for ophthalmic applications such as ocular inserts, collagen shields, colloidal, or particulate systems like solid lipid nanoparticles, nanocapsules, niosomes and liposomes have been developed to prolong the residence time and to improve the bioavailability4. Solid lipid nanoparticulate systems have received considerable attention over the years due to their advantages compared to other drug delivery systems. Solid lipid nanoparticles (SLN) are systems of remarkable technological relevance from a pharmaceutical perspective. These particulate systems, with sizes typically in the range of 50-1000 nm, are composed of biodegradable and biocompatible solid lipids and stabilized by emulsifier(s). These advantages include:

1. Targeted delivery of drugs to the specific site to minimize toxicity.
2. Improved bioavailability by reducing fluctuations in drug levels.
3. Improved stability of drugs against enzymatic degradation.
4. Sustained and controlled release effect that reduces dosing frequency with improved patience compliance.
5. Ease of administration through various routes including topical, oral, nasal, pulmonary, intraocular, parenteral, and transdermal.

Considering the above advantages, nanotechnology has been used in ocular drug delivery to achieve extended drug release in the management of external inflammatory/autoimmune ocular diseases5. Levofloxacin is a broad spectrum antibiotic of the fluoroquinolones drug class, and the levo isomer of its predecessor Ofloxacin. In chemical terms, Levofloxacin, a Chiral fluorinated carboxy quinolone, is the pure (−)-(S)-enantiomer of the racemic Ofloxacin6.7. Its spectrum of activity includes most strains of bacterial pathogens responsible for various infections, including Gram negative (\textit{E. Coli}, \textit{Haemophilus influenzae}, \textit{Klebsiella pneumoniae}, \textit{Legionella pneumophila}, \textit{Moraxella catarrhalis}, and \textit{P. aeruginosa}), Gram positive (\textit{Staphylococcus aureus}, \textit{Streptococcus pneumoniae}, \textit{Staphylococcus epidermidis}, and \textit{Streptococcus pyogenes}) and atypical bacterial pathogens(\textit{Chlamydiaphilapneumoniae} and \textit{Mycoplasma pneumoniae}). Compared to earlier antibiotics of the fluoroquinolone class such as Ciprofloxacin, Levofloxacin exhibits greater activity toward Gram-(+) bacteria8,9. Levofloxacin and other fluoroquinolones are valued for their broad spectrum of activity, excellent tissue penetration, and for their availability in topical, oral and intravenous formulations. Levofloxacin is used alone or in combination with other antibacterial drugs to treat certain bacterial infections10,11. Hence in the present study an attempt is made to prepare solid lipid nanoparticle of Levofloxacin and to evaluate its antimicrobial action against \textit{S. aureus}.

MATERIALS AND METHODS

MATERIALS
Stearic acid (melting point 54°C) was purchased from fisher scientific, poloxamer 188 (melting point 52-57°C) was kindly provided by Meyer Organics (Bangalore), Levofloxacin hemihydrate was kindly provided by Embiotic laboratories (Bangalore). All other chemicals were of analytical grade or equivalent.

Compatibility studies

Drug-Excipients compatibility studies by FT-IR

To determine the drug-excipient compatibility, FT–IR studies were carried out. The IR spectra of pure drug (Levofloxacin hemihydrate), Stearic acid, Poloxamer and their physical mixture (1:1:1) were recorded by using the potassium bromide (KBr) disk technique. FT-IR measurement over the range of 4000-600 cm-1 was performed.

Drug excipient compatibility studies by DSC

Available online: www.uptodateresearchpublication.com
Drug-excipients compatibility study was also performed by Differential Scanning Calorimetry (DSC). Thermal characteristics of the pure drug and physical mixture of drug, stearic acid and surfactant were performed by using an automatic thermal analyzer system (Mettler DSC 823, Germany). The entire samples were run at a scanning rate of 10 °C per min from 25 - 300 °C.

Preparation of SLN

Levofloxacin loaded SLN were prepared by homogenization method followed by ultrasonication technique. Levofloxacin, Stearic acid were dissolved in 5 ml mixture of chloroform and methanol (4:1). Organic solvents were completely removed by using a Rota-evaporator. Drug embedded lipid layer was melted by heating at 5 °C above melting point of the lipid. An aqueous phase was prepared by dissolving poloxamer 188 in deionized water and heated to the same temperature of oil phase. Hot aqueous phase was added to the oil phase, and homogenization was carried out at 10,000 rpm using homogenizer for 30 min. Coarse hot oil in water emulsion was ultrasonicated for 20 min. Levofloxacin loaded SLN were obtained by allowing hot nanoemulsions to cool to room temperature.

The composition and the formulation design of these solid lipid nanoparticulate systems is demonstrated in Table No.1.

Characterization of SLN

Measurement of size and zeta potential of SLN

The size and zeta potential of SLN were measured by photon correlation spectroscopy (PCS) using Zetasizer Nano ZS (Malvern Instruments, UK). Samples were appropriately diluted with deionized water to obtain 50 and 200 Kcps for the measurements.

Scanning electron microscopy (SEM)

Surface morphology of the specimen will be determined by using a scanning electron microscope. The samples are dried thoroughly in vacuum desiccator before mounting on brass specimen studies, using double sided adhesive tape. Gold-palladium alloy of 120°A Knees was coated on the sample sputter coating unit (Model E5 100 Polaron U.K) in Argon at ambient of 8-10 °C with plasma voltage about 20mA. The sputtering was done for nearly 5 minutes to obtain uniform coating on the sample to enable good quality SEM images.

Drug content

Total drug content in the SLN formulation was determined by dissolving SLN formulation containing drug equivalent to 10 mg in small quantity of methanol. Then the solution was filtered through Whatmann filter paper and diluted to 100 ml with phosphate buffer pH 7.4 to give concentration 100µg/ml of Levofloxacin. Then 1 ml was pipetted out in 10 ml volumetric flask to give a concentration 10 µg/ml and then absorbance was measured using UV Spectrophotometer at λmax 288 nm against blank.

Entrapment efficiency

The entrapment efficiency (EE %) of Levofloxacin loaded SLN was determined by centrifugation method. 2 ml of nanosuspension was taken and subjected to centrifugation on a cooling ultracentrifuge at 5000 rpm for 30 min. The clear supernatant was siphoned off to separate the unentrapped drug. 1 ml of supernatant was taken and diluted with methanol up to 10 ml and absorbance was recorded at 288 nm using UV spectrophotometer. Amount of drug present in supernatant and sediment gave a total amount of drug present in system. The % entrapment was determined by following formula:

\[
\text{Percentage entrapment} = \left(\frac{\text{Amount of drug in sediment}}{\text{Total amount of drug added}} \right) \times 100
\]

In-vitro drug release studies

The release of drug was determined by using the treated cellophane membrane mounted on the one end of open tube, containing drug equivalent to10 mg of formulation. The dialysis tube was suspended in 250 ml beaker, containing 200 ml PBS (pH 7.4). The solution was stirred at 200 rpm with the help of magnetic stirrer at 37±0.5 °C. Perfect sink conditions were maintained during the drug release testing. The samples were withdrawn at suitable time interval (at 1, 2, 4, 6, 8, 12, 18 and 24 hrs). The dissolution medium was replaced with same amount of fresh
PBS (pH 7.4) solution to maintain the volume 200 ml throughout the experiment. The drug content in the withdrawn samples (1 ml) were estimated at 288 nm after making the volume up to 10 ml with PBS (pH 7.4) and cumulative % of drug released was calculated and plotted against time (t).

Preparation of Levofloxacin loaded SLN gel

Gels were prepared by cold mechanical method, by using Carbopol 934 as gelling agent, triethanolamine as neutralizing agent and water as dispersion medium.

Method of preparation

Required quantity of Carbopol 934 was taken and hydrated in sufficient quantity of water for 24 hrs. Further, the hydrated gel was stirred for 4 hrs. Triethanolamine was added for the neutralization of gel and stirred it until a clear transparent gel was obtained. Accurately weigh the SLN which is equivalent to 100 mg of Levofloxacin and incorporated into 5 gm of gel by mechanical mixing for 2 hrs until it gets distributed uniformly.

Evaluation parameters for the SLN gel

Physical examination

Macroscopic examination for visual appearance, color, and clarity was done for the prepared gel.

Measurement of pH

The pH of gel was determined by using digital pH meter. The electrode first calibrated with pH 4.0 and pH 7.0 solutions then the measurement of pH of gel was done.

Spreadability

The Spread ability of the gel was determined using the following technique: 0.5 gm gel was placed within a circle of 1 cm diameter premarked on a glass plate over which a second glass plate was placed. A weight of 500 g was allowed to rest on the upper glass plate for 5min. The increase in the diameter due to spreading of the gels was noted.

Viscosity and Rheological properties

Viscosity of the SLN gel was done by using Brookfield viscometer with T-bar spindle (no. 94). Gel was filled in a beaker of suitable size and spindle was lowered perpendicularly and rotated at such a speed so as to generate torque >30%. The viscosity of gel was obtained by multiplying the viscometer reading with multiplication factor given in Brookfield viscometer catalogue.

Drug content

The drug content was determined by 2 gm SLN gel sample was withdrawn from container and dissolved in methanol and made volume up to 100 ml. After suitable dilution absorbance was measured by UV spectrophotometer against blank at λ_{max} 288 nm and the drug content was calculated.

In-vitro release studies

The release of drug was determined by using the treated cellophane membrane mounted on the one end of open tube, containing 1gm of SLN gel. The dialysis tube was suspended in 250 ml beaker, containing 200 ml PBS (pH 7.4). The solution was stirred at 200 rpm with the help of magnetic stirrer at $37\pm 0.5^\circ C$. The diffusion cells were maintained at $37\pm 0.5 ^\circ C$ with stirring at 200 rpm throughout the experiment. The samples were withdrawn at suitable time interval (at 0.5, 1, 2, 4, 6, 8, 12, 18 and 24 hrs). The dissolution medium was replaced with same amount of fresh PBS (pH 7.4) solution to maintain the volume 200 ml throughout the experiment. The drug content in the withdrawn samples (1 ml) were estimated at 288 nm after making the volume up to 10 ml with PBS (pH 7.4) and cumulative % of drug released was calculated and plotted against time (t). Simultaneously the release studies compared with the marketed product (Levobact-0.5% ophthalmic solution).

Antimicrobial efficacy studies

The antimicrobial efficacy studies were carried out by agar diffusion medium employing cup-plate technique. Biological activity of the optimized formulation is compared with marketed eye drops (Levobact-0.5%, B. No- LFAH0011) against micro organism *Staphylococcus Aureus*. Solutions A, B and C containing 10 µg/ml of Levofloxacin (A. Marketed Levofloxacin eye drops, B and Pure Levofloxacin drug, C. Optimized formulation) were prepared. The solutions were taken and bored into a sterile agar medium which is previously seeded with organisms (Staphylococcus aureus). After allowing diffusion of the solutions for 2 hrs, the plates were incubated for 24 hrs at 37°C. The zone of inhibition
Ocular irritation studies
Ocular irritation studies were performed on male albino rabbits weighing 1-2 kg according to the Draize technique. Little amount of the sample is placed in the lower cul-de-sac of the eye and irritancy was tested at the time interval of 1 hr, 2 hrs, 48 hrs, 72 hrs, and one week after administration. The rabbits were observed periodically for redness, swelling and watering of the eye.

Stability studies
Whenever a new formulation is developed, it is very essential to establish that the therapeutic activity of the drug has not undergone any change. To conform this, the selected formulations were subjected to stability studies. Intermediate stability testing studies was performed for 6 months. The optimized formulations were kept at 30±2 °C and 65±5% RH. Drug entrapment and drug release were fixed as physical parameters for stability testing.

RESULTS AND DISCUSSION
Compatibility studies
FTIR studies to find out the compatibility of drug with the excipients
The FT-IR spectra of pure Levofloxacin and the physical mixture (1:1:1) of drug with stearic acid and poloxammon188 given in Figure No.1 and Figure No.2 respectively. The IR spectra of pure drug shows principal peaks at 1724 cm⁻¹ (C=O stretching vibration of – COOH group), 1294 cm⁻¹ (C-N stretching), 1084 cm⁻¹ C-F (Stretching). The physical mixture on the other hand shows peaks at 1710, 1290 and 1097 cm⁻¹. From this we have concluded that the physical mixture of drug, Levofloxacin does not show any major interactions with the formulation ingredients Stearic acid, poloxamer 188.
FT-IR studies for the optimized formulation F4 was carried out and from the spectra, we have observed that the absence of characteristic peaks of the pure drug which indicates the drug was encapsulated in the lipid core of solid lipid nanoparticles shown in Figure No.3.

DSC investigations
Drug-excipient interaction was determined with Mettler DSC 60 (Shimadzu, Japan) for the pure drug and physical mixture of drug, stearic acid and surfactant. The thermo gram obtained was shown in (Figure No.4, 5). The endothermic peak of pure drug was retained in the physical mixture of drug and excipients and conforming that there was no interaction between drug and excipients.

Drug content and entrapment efficiency
The highest drug content was observed in F8 (96.26±0.31) because of high drug loading. Highest entrapment efficiency was observed in F3 and F4 with 90.23% and 95.64% respectively. The high drug entrapment may be observed due to the rapid quenching of the drug occurred in the lipid phase due to the presence of Poloxamer as surfactant phase and it was observed that increase in the lipid content resulting increase in the entrapment efficiency. Further we observed that the effect of drug loading in the entrapment efficiency. Highest entrapment of 95.74% was found in F8 (drug: lipid: surfactant in the ratio of 2:3:1) and lowest entrapment of 70.21% was found in F7 (drug: lipid: surfactant in the ratio of 0.5:3:1).
The results showed that increase in drug loading increases the entrapment efficiency and decrease in loading decreases in entrapment efficiency. For F5 and F6 % EE was found as 85.64% and 92.23% respectively. The results also suggested that increases in the Poloxamer concentration increased the entrapment efficiency as it acted as stearic stabilizer in case of F6.
Particle size analysis
Particle size of the solid lipid nanoparticle was analyzed by using Malvern particle size analyzer for the optimized formulations F3. The mean particle size of optimized formulation F3 was found to be 392 nm with particle size distribution less than 1μm.
Zeta potential measurement
Zeta potential is a key factor for evaluation of the stability of colloidal dispersion. The zeta potential was measured for the optimized formulations. The values of zetapotential of the optimized formulation F3 was found to be -26.6 mV which is sufficient to keep the particles stable.
Scanning electron Microscopy
The shape and surface morphology of optimized SLN formulation (F4) was studied by SEM. The microphotographs reveal that the particles are uniform in size and roughly spherical in shape (Figure No.4). The presence of aggregates might be attributed to a short redispersion time after centrifugation and drying at room temperature.

In-vitro release studies
All the formulation showed more than 30 % in the first 1 hr due to the presence of un-entrapped drug and the drug entrapped on the surface of lipid core which released faster showing dose dumping which is suitable to produce the initial effect of drug. It has been found that from the SLN formulation, the release were F1- 95.28%, F2- 88.14 %, F3-85.26% and F4 - 78.81%. The increase in lipid ratio from F1 to F4 causes decrease in the drug release and the release was more controlled by increasing the lipid ratio.

By taking F3 as optimized formulation we studied the effect of surfactant concentration by changing the ratio to 0.5% and 1.5% for the formulation F5 and F6. We observed slight increase in the drug release (95.6%) with increase in the surfactant (F6) and also the release is decreased to 76.54% with decrease in the surfactant ratio (F5). Further we have studied the effect of drug loading in the release of drug for the formulation F7 and F8 and it was found that decrease in the drug loading causes decrease in drug release in F7. The results are shown in Figure No.7 and Figure No.8.

Kinetic model data analysis
Upon the application of different drug release model kinetics, it was found that all formulation follows Peppas model. The ‘n’ values for all the formulation were found to be less than 0.5. This indicates that the release approximates Fickian diffusion mechanism.

Preparation and Evaluation of Levofloxacin loaded SLN gel
Based on the results of in-vitro release studies and entrapment efficiency formulation F3 selected as best formulation and further converted into gel and coded as GF3. The gel was prepared by using the SLN containing Levofloxacin equivalent to 100 mg of Levofloxacin, Carbopol 934, and triethanolamine according to the Table No.7. The gel was evaluated for parameters like;

Evaluation of SLN gel

Physical examination
The prepared SLN gel (GF3) was off-white in color and homogenous.

pH
The pH of the SLN gel (GF3) was found to be 7.2.

Spreadability
The Spreadability of the gel (GF3) was found to be 10.12 g/sec.

Viscosity
Viscosity of the SLN gel was done by using Brookfield viscometer with T-bar spindle (no. 94). Viscosity of the SLN gel (GF3) was found to be 10945±80 cps.

In vitro drug release studies
The direct exposure of SLN dispersion to diffusion media and quick release of drug may account for rapid initial release in SLN dispersions. SLN-gel formulation showed controlled drug release over 24 hrs.

Kinetic model data analysis
The release data obtained from formulation GF3 was subjected for data analysis. The formulations followed Peppas order release profile and the ‘n’ value was found to be less than 0.5. This indicates that the release approximates Fickian diffusion mechanism (Table No.2).

Comparative in vitro release studies
Comparative in vitro release studies were conducted for formulation GF3 with the marketed product Levobact 0.5% ophthalmic solution and the results showed that formulation GF3 showed extended release over a period of 24hrs. The results are shown in Figure No.6.

Antimicrobial efficacy studies
Antimicrobial studies were conducted for optimized formulation F3 against the organism *Staphylococcus aureus*. The zone of inhibition produced by the optimized formulation F3 was more when compared to Marketed product (Levobact-0.5% ophthalmic
solution) and pure drug Levofloxacin of same concentration (10 µg/ml) shown in Figure No.10. This indicated that the formulation F3 has good antibacterial activity.

The results of the antimicrobial efficacy studies are shown in Figure No.10.

Ocular irritation Studies

Ocular irritation study was conducted for formulation GF3 as per Draize technique in male Albino rabbits. The results of the ocular studies indicated that the formulation GF3 was non-irritant with excellent ocular tolerance. No ocular damage or abnormal clinical signs to the cornea, iris or conjunctiva were visible. Only a few signs of increased lacrimation were noted. The results are shown in Table No.3 to 5.

Table No.1: Formulation Design for the Preparation of Levofloxacin loaded SLN

<table>
<thead>
<tr>
<th>S.No</th>
<th>Optimized formulation Gel</th>
<th>Zero order</th>
<th>First order</th>
<th>Korsmeyer-Peppas</th>
<th>‘n’ value</th>
<th>Higuchi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Regression co-efficient(r²)</td>
<td>0.984</td>
<td>0.956</td>
<td>0.989</td>
<td>0.342</td>
<td>0.980</td>
</tr>
</tbody>
</table>

Table No.2: Regression co-efficient (r²) value of different kinetic models for optimized formulation gel(GF3)

<table>
<thead>
<tr>
<th>S.No</th>
<th>Ingredients in % w/v</th>
<th>F1</th>
<th>F2</th>
<th>F3</th>
<th>F4</th>
<th>F5</th>
<th>F6</th>
<th>F7</th>
<th>F8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Levofloxacin</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>1.0</td>
</tr>
<tr>
<td>2</td>
<td>Stearic acid</td>
<td>0.5</td>
<td>1.0</td>
<td>1.5</td>
<td>2.0</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>3</td>
<td>Poloxamer 188</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.25</td>
<td>1.0</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>4</td>
<td>Chloroform (ml)</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>Methanol (ml)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>Purified Water (ml)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Table No.3: Eye irritation testing: Rabbit conjunctival observation

<table>
<thead>
<tr>
<th>S.No</th>
<th>Redness</th>
<th>Normal rating</th>
<th>Rating for formulation (GF3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vessel normal</td>
<td>0 none</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Vessels definitely injected above normal</td>
<td>1 slight</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>More diffuse, deeper crimson red with individual vessels not easily discernible</td>
<td>2 moderate</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Diffuse beefy red</td>
<td>3 severe</td>
<td>0</td>
</tr>
</tbody>
</table>

Table No.4: Eye irritation testing: Rabbit iris observations

<table>
<thead>
<tr>
<th>S.No</th>
<th>Values</th>
<th>Normal rating</th>
<th>Rating for formulation (GF3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Normal</td>
<td>0 none</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Folds above normal, congestion, swelling, iris reacts to light</td>
<td>1 slight</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>No reaction to light, hemorrhage, gross destruction</td>
<td>2 severe</td>
<td>0</td>
</tr>
</tbody>
</table>
Table No.5: Eye irritation testing: Rabbit corneal observations for opacity and area of cornea involved

<table>
<thead>
<tr>
<th>S.No</th>
<th>Opacity</th>
<th>Normal rating for opacity</th>
<th>Rating for formulation GF4</th>
<th>Area of cornea involved</th>
<th>Normal rating for corneal area involved</th>
<th>Rating for formulation GF3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>No opacity</td>
<td>0 none</td>
<td>0</td>
<td>25% or less (not 0)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Diffuse area details of iris clearly visible</td>
<td>1 slight</td>
<td>0</td>
<td>25% to 50%</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Easily visible translucent areas, details of iris slightly obscure</td>
<td>2 mild</td>
<td>0</td>
<td>50% to 75%</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>Opalescent areas, no details of iris</td>
<td>3 moderate</td>
<td>0</td>
<td>Greater than 75%</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Opaque, iris is invisible</td>
<td>4 severe</td>
<td>0</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

Table No.6: Stability studies for the formulation F3

<table>
<thead>
<tr>
<th>S.No</th>
<th>Temperature and RH</th>
<th>% Drug Entrapment After (months)</th>
<th>% Drug Release After (months)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30±2 °C and 65±5% RH</td>
<td>95.74±0.24 94.89±0.38 92.23±069</td>
<td>90.48±019 85.26 85.26 83.26 80.48</td>
</tr>
</tbody>
</table>

Table No.7: Stability studies for the SLN gel GF3

<table>
<thead>
<tr>
<th>S.No</th>
<th>Temperature and RH</th>
<th>Parameters</th>
<th>0</th>
<th>1</th>
<th>3</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30±2 °C and 65±5% RH</td>
<td>pH</td>
<td>7.2</td>
<td>7.2</td>
<td>7.2</td>
<td>7.16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drug content</td>
<td>95.20±0.14</td>
<td>95.09±0.59</td>
<td>93.23±0.64</td>
<td>90.29±0.39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Drug release</td>
<td>84.12</td>
<td>84.09</td>
<td>82.16</td>
<td>79.96</td>
</tr>
</tbody>
</table>
Figure No.1: FTIR spectrum of Levofloxacin

Figure No.2: FTIR spectrum of Levofloxacin with excipients

Figure No.3: FTIR spectra of optimized formulation F4
Figure No.4: DSC thermograph of pure drug Levofloxacin

Figure No.5: DSC thermograph of pure drug with excipients

Figure No.6: SEM of the optimized formulation F4
Figure No.7: *In-vitro* release profile of formulations F1 – F4 in phosphate buffer pH 7.4

Figure No.8: *In-vitro* release profile of formulations F5 – F8 in phosphate buffer pH 7.4

Figure No.9: Comparative release studies of the SLN gel (GF3) with the marketed formulation
CONCLUSION

Hot homogenization followed by ultra sonication method is suitable to produce SLN in nanometric size range. The drug Levofloxacin could very well be entrapped in the solid SLN and their characteristics could be monitored by making changes in various formulation and process variables. The Levofloxacin loaded SLN gel showed an extended release when compared to marketed formulation. Antimicrobial studies revealed that the developed formulations have better antimicrobial action against S. aureus than the marketed formulation. Ocular irritation studies revealed that the developed formulation do not have produced any ocular irritation. From the stability studies we observed that the formulations were stable at intermediate stability testing conditions. The developed formulation is hence suitable for sustained ocular drug delivery with better antibacterial action.

ACKNOWLEDGEMENT

All authors would like to thanks Bharathi College of Pharmacy, Bharathinagara, Mandya and Karnataka, India for supporting for the fulfillment of this work.

BIBLIOGRAPHY

